Working in a permanent, full-time role, we are hiring for a Geotechnical Estimator to join our office-based team at our depot in Cleland.

The role of the successful candidate will primarily be to support our team in preparing budget estimates, quotes and tenders for new project opportunities.

The successful candidate will have a proactive approach, a willingness to learn and be able to quickly understand each client’s specific requirements. Knowledge of the drilling industry or geotechnical/geological background would be advantageous.

The role will be based full-time in our office in Cleland, with very occasional travel to our various operating sites around the Scottish central belt.

Regular working (office) hours: 8:30am – 5pm, Monday to Friday.

Core Responsibilities

  • Development and pricing of new projects, tenders and opportunities
  • Liaising with existing and new clients
  • Liaising with subcontractors and suppliers
  • Monthly review of invoicing for completed work
  • Handling new enquiries

 

Requirements

  • Strong numerical and technical skills
  • Skilled in using modern technology / IT packages (particularly Excel)
  • Valid driving license

 

Beneficial

  • Experience in geotechnical / site investigation sector
  • Experience in pricing bids / tenders

 

Remuneration Package

Hydracrat will providing the following remuneration:

  • Competitive annual salary (available on application, based on experience)
  • Car allowance
  • Enrolment in company pension scheme
  • 28 days annual holiday, flexible holiday times
  • Life cover

 

For more information and to apply, click here or contact admin@hydracrat.com

Ground Source Heat Pump boreholes are the most common method for extracting heat from the ground to warm properties.

As you’ll probably have noticed, heat pumps have been making an increasing number of headlines in the run-up to the COP26 UN summit in Glasgow. Our team decided, therefore, that it was time to help answer some of the key borehole-related questions!

Can’t see your question on the list, or want some advice about the potential for a GSHP on your property? Contact us.

 

There are two types of Ground Source Heat Pump boreholes, known as “closed-loop” and “open-loop.”

Closed-Loop boreholes are designed to harness heat from the ground by circulating thermal transfer fluid within plastic pipes which are installed in boreholes.

The plastic pipes, known as ‘collector loops’, are fitted with a u-bend.

The thermal transfer fluid will be relatively cold as it enters the borehole but is warmed by the ground temperature as it circulates to the u-bend at depth and back up towards the surface.

When the fluid exits the borehole it is circulated towards the heat pump, which effectively extracts the heat from the fluid. The fluid, now cooler, is circulated back towards the borehole again where it repeats the cycle.

Hence the term “closed-loop”!

Our example demonstrates the typical design of a closed-loop borehole.

Open-Loop boreholes are designed to harness heat through the abstraction of groundwater from aquifers or underground mine workings. The differences between closed-loop and open-loop boreholes are explored in a dedicated section on this page.

Closed-loop boreholes are the more common solution but Open-loop systems can be especially viable on developments with an especially high demand for heat. This can include district heating schemes or industrial warehouses and factories.

Borehole for Ground Source Heat PumpBoreholes for a Ground Source Heat Pump are drilled and installed by a specialist drilling contractor, such as Hydracrat.

The drilling contractor is typically commissioned by an engineer, installer or designer to carry out these works on a sub-contract basis.

The drilling contractor will set up the drilling rig at each of the borehole locations and drill vertically into the ground until the target depth is reached. Depending on the heat requirements of the property, each borehole will likely be between 100 and 150 metres deep.

The drilling contractor will typically supply the materials to be installed within the boreholes, including the collector loops.

These loops shall be pressure-tested before installation and subsequently installed within the borehole to the final depth. The loops are then pressure-tested once more, to ensure that the pipes have not been damaged during the installation.

The borehole will then be backfilled with grout to protect the loops and enhance thermal potential.

 

Closed-Loop Boreholes

 

  • Boreholes usually drilled to depths of between 100 and 150 metres below ground level.
  • Boreholes typically drilled in 120mm (4 ¾ inches) diameter.
  • Polyethylene collector pipe installed to depth of borehole. Pipe usually either 32mm or 40mm in diameter with u-bend at the final depth of the borehole.
  • Boreholes backfilled with grout to surface (backfill specification determined by designer and/or installer).

 

Open-Loop Boreholes

 

  • Boreholes drilled to target productive aquifer, usually to depths of between 60m and 200 metres below ground level. Boreholes sometimes drilled to greater depths to target abandoned coal mine workings.
  • Boreholes drilled in larger diameters to 300mm (12 inches) or greater. This can help to maximise the water abstraction potential.
  • Liner installed within the borehole to final depth, to restrict sediment infiltration.
  • Submersible water pump, electric cabling, riser pipe and other equipment installed within borehole. This equipment will be specified based on a target rate of groundwater abstraction.
  • Separate borehole(s) will be required to re-inject the (cooler) water back into the same aquifer.

An average sized house in Scotland will usually need 2-4 boreholes each drilled to depths of between 100m and 150m below ground level.

The number of boreholes and the depths of these boreholes are specific to each property and depend on many different factors. The most critical factors are:

Size of the Heat Pump

The load of the heat pump (expressed in kilowatts or kW) is clearly a critical factor.

This will be determined based on the estimated “heat loss” of the property based on factors such as the room sizes, volume/quality of insulation and the type of windows.

Generally the larger the property, the higher the heat pump load needs to be in order to meet the heat demands of that property, but this is not always the case.

Thermal Conductivity of the Geology

The Scottish geology is incredibly complex and can vary significantly between the different regions.

Each type of rock offers a different level of thermal conductivity. In layman’s terms, that’s the capacity of the rock to store and transfer heat to the collector loop within the borehole. Geology which offers better thermal potential may not require boreholes to be quite as deep, compared to boreholes in areas where the geology is less favourable.

The thermal properties of the ground in the context of designing boreholes for a GSHP are often calculated and expressed in Watts per metre (W/m) of borehole length.

An average sized house will usually require a 10-15kW Heat Pump. This in turn will typically require 2-4 boreholes each drilled to a depth of around 100-150 metres.

Your drilling contractor and installer will be able to carry out an exercise to calculate the number and depth of the boreholes, whilst providing you with the budget price for the installation works.

It’s important not to take shortcuts when it comes to defining the requirements of a Heat Pump and the borehole array. Proper consideration will help avoid mistakes and costly rectification works later.

A closed-loop borehole may offer anything from 3-7kW but this depends on many factors including the depth of the borehole, materials installed within the borehole and the thermal conductivity of the surrounding rock.

It’s important to determine the required load for the GSHP first, as this will then help dictate what the specification of the borehole(s) should be.

A qualified designer/installer (alongside the drilling contractor) will be able to carry out the heat loss calculations to establish the required load of the GSHP. In turn, this will inform the project team how much drilling will be required.

The cost to drill and install the boreholes varies from project-to-project.

The cost of these works are determined based on a number of factors, including:

  • Cost of transporting drilling rig, equipment and crew to site.
  • Target depth of the borehole.
  • Depth of superficial deposits which are overlying the bedrock (essentially the depth of the topsoil, sands, gravels, clays or made ground which sits above the natural bedrock).
  • Type of bedrock (some rock may be harder and thus slower to drill). The geology in Scotland varies significantly and as such, so do the drilling costs.
  • Type of installations and materials required within the borehole.
  • Other factors such as the potential for drilling through disused coal mine workings and the expected groundwater conditions will also have an impact.

Contact us if you’d like to know more about the likely costs of a GSHP with boreholes at your property.

This is an important factor when considering whether a Ground Source Heat Pump is suitable for your property. A few of the key considerations are:

Space for Drilling Rig / Crew

It’s important to make sure that there is sufficient space for the drilling rig to access the drilling location. This basically means making sure that any gates, paths or driveways are wide enough for the drilling rig to be moved safely into position.

The drilling contractor will also need to confirm there is sufficient space to store equipment on site and whether there is enough safe working space for the crew.

Borehole Spacing

Your property will require a total length of collector pipe. To achieve the total collector pipe length, the pipes are usually split into collector loops, which are installed within the vertical boreholes.

Where more than one borehole is required, each borehole will need to be spaced sufficiently apart from each other (usually 6-8 metres) so that heat extraction from the collector loop in each borehole won’t negatively affect the performance of the others.

Your installer / designer will need to make sure that adequate borehole spacing can be achieved within your property.

Services

Boreholes will also need to be located in areas which are free of any underground services such as electric cables, gas or water pipes.

Mine workings

Properties in some areas of Scotland may be sitting above abandoned underground coal/shale mine workings. These mine workings may exist at sufficiently shallow depth that any proposed boreholes could intercept them.

Mine workings can have an impact on the design and installation costs of installing closed-loop boreholes for GSHPs, so it’s important to understand the risks in advance.

Your installer, designer or drilling contractor will be able to help indicate if boreholes at your property are likely to encounter potential mine workings.

Need some advice on the prospect of drilling boreholes at your property? Contact us

Hydracrat recommends that boreholes are drilled no closer than 10 metres from existing buildings, where space permits.

If less space is available, a preliminary site visit should be carried out to assess feasibility of drilling.

We also recommend boreholes are spaced at least 3 metres from any boundary with a neighbouring property.

The installer will generally stipulate boreholes must be spaced at least 6-8 metres apart from each other.

This is to prevent possible thermal breakthrough which could impact performance of the GSHP.

For larger systems requiring more boreholes, it may be necessary to have greater spacing.

A properly installed borehole should last for several decades and can last significantly longer, potentially up to 100 years.

It is important to ensure that the drilling contractor employed to carry out the works is reliable and experienced in the field.

Hydracrat are proud members of the Ground Source Heat Pump Association, who have developed a series of standards for the installation of vertical boreholes.

Yes, Ground Source Heat Pumps are becoming increasing popular in Scotland.

GSHPs are an extremely efficient technology and offer the potential for some of the greatest reductions in carbon emissions compared to gas boilers.

All kinds of properties are now adopting GSHPs, from private residences and social housing developments to large commercial buildings, warehouses and factories.

District Heating Systems using GSHPs which have the potential to heat hundreds of homes are also being assessed in many regions of the country.

Installing a Ground Source Heat Pump can bring significant benefits to the property owner.

Consistent Temperatures

In very cold weather, when heating is most needed, a GSHP using a borehole has access to warmer temperatures from the rock in the ground than an Air Source Heat Pump has from ambient air.

The temperature of the bedrock tends to be approximately 10-12 degrees and varies very little, regardless of the time of day or year.

By comparison an Air Source Heat Pump is less efficient, particularly during the Scottish winter when the outdoor temperature s lower and the air is damper.

Heat (and Cool) Storage

GSHP systems, uniquely amongst renewable energy technologies, offer the opportunity to recycle heat energy. Heat energy can be captured when it is freely available in the summer, stored in the ground over the autumn, and released to heat buildings in winter. This singular merit is attributable to use of the ground for Seasonal Thermal Energy Storage, which is an integral part of ground source energy.

By contrast, it is much more difficult and expensive to store heat extracted from the air.

Heat at night for cheaper electricity

The Thermal Energy Storage capacity of the rock surrounding the borehole allows GSHPs to be used efficiently at all hours of day and night – this provides the opportunity to use GSHPs at night when electricity is much cheaper using an economy 10 tariff or similar.

This is not possible with an ASHP, as the temperature is at its lowest during the night.

Less Maintenance

All of the equipment for a Ground Source Heat Pump is either housed inside the property or in the case of the boreholes, underground. The system therefore isn’t exposed to outside elements such as wind, rain, freezing temperatures and debris such as branches or leaves.

On the other hand, ASHPs require regular checks to the air inlet and evaporator, to ensure they are free of leaves or other debris. Plants or weeds growing within the proximity of the inlet can also compromise the unit, if left unchecked.

Reliable Supply of Heat

GSHPs do not suffer the problems of “intermittency” that affect renewable energy from wind turbines, photovoltaic cells or solar thermal panels.

Indeed the Thermal Energy Storage capacity of the rock surrounding the borehole can be used to compensate for the intermittent supply of energy from other renewable sources.

A Long-Term Investment

Although ground source energy generally requires a higher level of investment upfront, the reductions in emissions of greenhouse gases are sizeable and the system is likely to last much longer than other low-carbon systems.

The boreholes, for example, can be expected to last for over 50 years. The GSHPs themselves are very reliable pieces of equipment with a long life.

GSHPs are also generally more efficient than their Air Source equivalent, so are likely to bring savings on running costs in the long-term.

Energy Security

At present, a significant number of Scottish homeowners live in houses which are heated using some form of fossil fuel. This is commonly with a gas boiler.

A hot topic in recent times has been the volatile cost of gas, much of which is imported from overseas. It is therefore a national challenge to try and control the cost of gas to ensure consumers receive a fair price.

Ground Source Heat Pumps, on the other hand, use electricity. As of 2021, 97% of Scotland’s electricity is generated from renewable sources (wind, hydro, solar) right here in Scotland. Thus in theory, consumers are likely to experience less volatility in the cost of running a GSHP compared to a gas boiler.

Need advice? Our team at Hydracrat will be delighted to help.

The extremely dry weather in Scotland this summer has been welcome amongst our drill crews, to say the least. The heat can bring its own challenges but generally things are just that bit easier during the summer months.

We are fast approaching the autumn and winter months, however, when conditions become wetter and ground conditions particularly soft.

One of the challenges on a Ground Investigation project can be in figuring out how to get all the drilling equipment across site. There’s the rig itself, plus the compressor, rods, drillbits, casing, core boxes, core barrel…and not forgetting the drill crews.

Moving the crew / equipment around site and setting up at each position can take time, especially on larger sites. Add soft, boggy conditions into the equation and it becomes a whole new challenge.

At Hydracrat, our HYCAT rotary drilling rigs were built with these conditions in mind. They offer practical solutions to many of the most common headaches and frustrations.

1) Low Ground Pressure -: Each rotary drilling rig is fitted with soft, wide tracks. These tracks help to reduce the ground pressure, enhancing the prospects of being able to track across soft, boggy or uneven terrain compared to standard tracked rigs.

2) Significant additional storage space -: Each rotary rig offers a high volume of onboard storage space for our regular drilling equipment, such as 6 metre drill rods, drill bits, core barrels, core boxes. This additional storage helps to reduce the number of return trips for equipment between borehole positions and the need to mobilise additional support vehicles is reduced.

3) Onboard compressor -: Most rotary drilling rigs typically utilise an air compressor which is separate to the drilling rig and towed around site. Where site conditions are soft, compressors would usually need to be transported separately using additional support vehicle.

Each of Hydracrat’s HYCAT drilling rigs, however, have a high-pressure compressor housed onboard, which helps to reduce moving and set up times further and enables drill crews to maximise productivity.

So as we move towards the winter months (and the more challenging conditions that the season invariably brings), Hydracrat are ready to offer our pragmatic approach and unique low ground pressure drill plant to help meet our client’s objectives on Ground Investigation projects.

To learn more about the services Hydracrat offers for Ground Investigations across Scotland, click here.

To learn more about Hydracrat’s drilling fleet solutions, click here.

Ground Source Heat Pumps are set to heat millions of homes across the UK in the years ahead. Many of our population, however, aren’t sure of what Heat Pumps are or how they work.

Hydracrat was therefore delighted to host a live webinar this month on behalf of the GSHPA. The webinar was developed to answer some of the most common questions about Ground Source systems.

Hydracrat was also able to cover the role of the rotary borehole drilling contractor during installations. This included the dynamic with the installer, practicalities of site works and methods used by the drilling contractor.

Interested in catching up? You can watch a recording of the webinar here.

You can learn more about the drilling services Hydracrat provide for Ground Source Heat Pumps here

Water. Clean, fresh water. It’s the world’s single most important resource but one that many of us may take for granted.

…but not by the farmer who needs a guaranteed supply to produce their fruit and veg.

…not the greenkeeper whose fairways and greens get extremely thirsty during the summer months.

They, along with distilleries, factories and recycling plants (to name a few more) need water, and lots of it. But from where?

Public mains water is an option, but for larger consumers that can mean expensive water bills and heavy usage of a sometimes already stretched mains network.

Many instead seek to use the groundwater stored in the bedrock, beneath ground level on their property. This groundwater can be accessed via a borehole drilled into the bedrock, with a water pump near the bottom to continuously push groundwater to the surface.

This is a simple concept but there is more to it than initially meets the eye, especially for those who need large volumes of water. Before pressing ahead, it’s important to establish the answers to some key questions.

Is there water in the ground beneath my property?

How deep will the drilling contractor need to drill to find the water?

Is there sufficient ground water to meet my needs?

Is the water suitable? The groundwater needs to be fresh…salt water is of little to no use (NB: drilling beside the sea doesn’t automatically mean the groundwater will be saltwater…in our many years drilling for links golf courses by the sea, many of them have had successful boreholes installed producing large volumes of fresh water)

Is there a steady, continuous supply of groundwater from the bedrock or will it quickly run dry?

There are a few common approaches to answering these questions.

Some choose to engage a water diviner.

Our first step is usually to commission a chartered geologist to assess the ground conditions beneath the site. This helps to judge the potential likelihood of a water supply beneath the site and recommends areas within the site offering the best water potential for drilling.

No matter the initial methodology, the truth is that the only way you will gain certainty on the answers to the key questions, is to drill into the ground to check.

That’s where a probe borehole comes in.

The probe borehole involves one of our rig and crew drilling a small diameter borehole into the ground, and then to flush the water up to the surface with high-pressure air.

It also helps to inform us of the required specification of the equipment for the final production borehole, like the water pump. Water samples can also be collected for subsequent testing, helping to confirm that the water is clean and safe.

Simply put, commissioning a full production borehole without knowing the answers can often be a potentially expensive gamble, especially for those who require a larger supply.

The probe is about de-risking the project. It’s about certainty. It’s about not taking the answers for granted.

Hydracrat offers a 3-Stage Process to Establish Water Wells. The process puts the probe borehole at its heart and has helped thousands of clients since 1960.